
Thermochimica Acta 403 (2003) 83–88

Differential 3ωcalorimeter
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Abstract

We have developed a new dynamic calorimeter using the differential 3ω detection method. The differential 3ω calorimeter
is capable of measuring dynamic heat capacity of liquid samples. The new calorimeter consists of a Wheatstone bridge made
of two identical heater/sensors, and is based on the sensitive null detection method. The balancing is done automatically at
all frequencies and is independent of temperature; once a sample is placed on one heater/sensor, a third harmonic signal is
produced due to the difference in the two arms of the bridge. The differential 3ω calorimeter provides enhancements over
traditional dynamic methods in dynamic range (up to 30 kHz), resolution, and ease of operation.
© 2003 Elsevier Science B.V. All rights reserved.
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1. Introduction

Calorimetry is unique in providing a method to di-
rectly monitor the free energy change of a given sys-
tem [1]. Recently there has been growing interest in
generalizing heat capacity measurements as a probe
to the dynamics of condensed matter[2]. Since heat
capacity can be expressed as the enthalpy fluctua-
tion from statistical mechanics, it is easily extended
to the dynamic regime within linear response theory
[3].

The 3ω method, an ac modulation method using
a heater as sensor (heater/sensor) simultaneously, has
been widely used to study both thermal and dynamic
properties of matter[4]. This method was originally
discovered by Corbino long ago[5], and then utilized
as a dynamic tool by Holland et al.[6]. More re-
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cently, Birge and Nagel[7] used a planar heater in
applying the same method to probe the slow dynam-
ics associated with glass transition, while Cahill et al.
[8] utilized a thin line heater to measure the thermal
conductivity of solids. Theoretical basis and experi-
mental setup of this method were reviewed by various
authors[2,9,10].

Since dynamic heat capacityCp(ω) includes con-
tributions from all degrees of freedom in matter[11],
the 3ωcalorimeter is an excellent tool in probing dy-
namic nature for a system[12]. In contrast, other tools
may couple to a specific degree of freedom; for ex-
ample, dielectric spectroscopy only couples to either
electric charges or dipoles. Despite its value as a dy-
namic probe, the dynamic range of the 3ωcalorimeter
is limited and its sensitivity is poor compared to, for
instance, dielectric spectroscopy. To enhance the dy-
namic range and sensitivity, the 3ωmethod adopting
a multiband heater/sensor and a substrate with a small
heat capacity times thermal conductivity·(Cpκ) value
were attempted[9,10].
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In this article we introduce a modification of this
method using two identical heater/sensors. The new
calorimeter, termed as differential 3ωcalorimeter, con-
sists of a Wheatstone bridge made of two identical
heater/sensors, and is based on the sensitive null detec-
tion method. The balancing is done automatically at all
frequencies and is independent of temperature; once
a sample is placed on one heater/sensor, a third har-
monic signal is produced due to the difference in the
two arms of the bridge. The differential 3ωcalorime-
ter provides enhancements over traditional dynamic
methods in both dynamic range (up to 30 kHz) and res-
olution. The improvements made in sensitivity, wide
dynamic range and stability are demonstrated for a
glycerol–amine binary mixture.

2. Differential 3ω calorimeter

The Wheatstone bridge circuit adopted in the pre-
vious version of the 3ωmethod to measure the third
harmonic signal is shown inFig. 1a [13]. HereR1 and
R2 are fixed resistors, whileRv is a variable one. Nor-
mally the resistors in the left arm are designed to be
of the order of a few kilo-ohm, so that the majority
of the current flows into the heater/sensorRsh. If one

Fig. 1. Wheatstone bridge circuits for the third harmonic detection
with a signal source (output impedanceR0) are shown. (a) A
conventional circuit.R1 is a resistor made of manganin wire with
a small temperature coefficient of resistivity, and the resistance of
R2 and a variable resistorRv is a few orders of magnitude larger
than that of the right arm resistances. (b) A differential circuit.
The bridge consists of two equivalent sets of resistorsR and Rsh.
The resistance ofR and Rsh is about 50� each. When a sample
is placed on one of theRshs as designated by a dark shade,V3ω

due to a difference in temperature oscillations ofRsh is generated.

drives the bridge circuit with a current at angular fre-
quencyω, I(t) = I0 cos(ωt), the third harmonic volt-
age induced across the bridge is given by:

V3ω= 1

2

(
R1

R1 + Rsh

)
I0Rshα|�Th|cos(3ωt+φ) (1)

whereφ represents the phase shift of the induced tem-
perature oscillation�Th with respect to the power os-
cillation. The temperature and power oscillations, of
course, occur at 2ω. R1 and Rsh represent the resis-
tance, andα does the temperature coefficient ofRsh.
For a planar heater/sensor placed on the surface of a
substrate, the temperature oscillation�Th is given by:

�Th = P0√
2ωCpsκs

e−iπ/4 (2)

where P0, Cps and κs are the power per unit area
of the heater, the heat capacity per unit volume, and
the thermal conductivity of the substrate, respectively.
(Note that heat capacity in this paper means heat ca-
pacity per unit volume throughout.) Now if a liquid
sample is put on top of the heater/sensor, there would
exist two different media on the opposite sides of the
heater/sensor. It is then straightforward to show that
Eq. (2)becomes:

�Th = P0√
2ωCpsκs + √

2ωCpκ
e−π/4 (3)

whereCp andκ are the heat capacity per unit volume
and the thermal conductivity of the liquid.

The modified Wheatstone bridge for the differential
3ω method is shown inFig. 1b. The bridge consists
of two identical sets of resistors, each set with a fixed
resistorR and a heater/sensorRsh. BothR andRsh are
of the order of 50�. The fixed resistors are made of
manganin wire with very small temperature coefficient
of resistivity to suppress unnecessary third harmonic
generation. Two identical heater/sensors, that is, two
metal films deposited on a glass substrate, reside in an
experimental stage maintaining the same temperature.
Even when a sinusoidal current flows through the cir-
cuit, there would be no signal across the bridge at both
the fundamental and its harmonics due to the intrinsic
balancing. But as soon as a sample is placed on one of
the heater/sensors, a 3ωsignal appears. Since the 3ω

signal is generated due to the difference in tempera-
ture oscillations from the two heat/sensors (one with
a sample and one without), the third harmonic voltage
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induced across the bridge is given by:

V3ω = 1

4

(
R

R + Rsh

)
I0Rshα|�ThL

− �ThR|cos(3ωt+ φ) (4)

where�ThL (temperature oscillation from the left arm
with a sample) and�ThR (from the right side without a
sample) are given byEqs. (2) and (3), respectively.φ is
the phase shift of the complex amplitude (�ThL−�ThR)
with respect to the input power oscillation. It is noted
that the expression ofEqs. (2) and (3)includesCpsκs
in the denominator, and thus the background signal
from the substrate is not completely eliminated. Nev-
ertheless, the signal becomes much more sensitive to
the sample properties.

For the conventional 3ωmethod, one has to bal-
ance the bridge as temperature changes because the
heater/sensor resistance varies, and parasitic capac-
itance usually induces an out-of-phase component
across the bridge due to the mismatch of right and
left resistors. This effect becomes severe at high fre-
quencies and requires an additive capacitor placed
acrossRsh. In contrast, the present design with two
identical heater/sensors would make bridge balancing
independent of temperature and frequency by sym-
metry. As the temperature of the two heater/sensors
is the same all the time, the balanced state is not dis-
turbed by a temperature fluctuation. Moreover, there
would be no out-of-phase signal caused by parasitic
cable capacitances. In actual implementation of the
differential 3ω method, however, one has to add a
variable resistorRv to one of the arms in parallel and
use it for fine control. This is because the resistance
and temperature coefficient of the two heater/sensors
differ to minute degree, even if every effort is made
to fabricate them identically. Since the difference in
resistance between the two heater/sensors (approxi-
mately 50� each) is less than 1%, the value ofRv
needed is of the order of 50 k�. Before leaving this
section, it is pointed out again that although a signal is
detected at 3ω, temperature oscillation occurs at 2ω.

3. Sample cell

Two identical heater/sensors are obtained by ther-
mally evaporating Ni onto a thick window glass of
thickness 6 mm as illustrated inFig. 2. Ni films are pre-

Fig. 2. A schematic diagram of the sample cell. Two equivalentRshs
and lead pads are deposited on a window glass of thickness 6 mm.
Zigzag-patterned Ni film resistors are used to obtain a reasonable
value of resistance. The dimension ofRsh is 6 mm×6 mm, and the
distance between the two heater/sensors is also 6 mm. The lead
pads of thickness 1�m are made of Ag deposited on the Ni films.
On top of one ofRshs, a silica tube of height 10 mm is placed to
contain a liquid sample.

ferred as heater/sensor because they have a large tem-
perature coefficient of resistance. The zigzag-shaped
heater/sensors have the dimension of 6 mm× 6 mm,
and the distance between them is 6 mm. To protect the
heater/sensors from chemical or electrical problems,
SiO2 of thickness∼2000 Å is deposited on top of the
heater/sensors. The two heater/sensors have to be sep-
arated by a few times the thermal diffusion length at
the lowest measuring frequency,λT = √

κs/2ωCps, in
order to be free from an interference between the two
heater/sensors. As the diffusion length of the window
glass at 10−2 Hz is approximately 2 mm, we chose the
separation distance to be 6 mm. During the course of
experiment, it is important to make the vacuum level
remain stable at a low value (less than 10−4 Torr); oth-
erwise the heater/sensor of the reference side measures
not only the thermal property of the substrate but also
that of air. Careful attention should be paid to the con-
tacts which connect lead wires to the heater/sensors.
The lead contacts can be considered to consist of con-
tact resistance and capacitance in parallel, and they
may give rise to contamination in phase and amplitude
of the third harmonic signal.
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4. Experimental results and discussion

In order to study the correlation between atomic
scale short range order and macroscopic structural
relaxation of supercooled liquids, we have mea-
sured the dynamic heat capacity of binary mixtures,
(glycerol)x(1,3-propanediamine)1−x using the differ-
ential 3ωcalorimeter. Here we present only the data
for thex = 0.4 case to demonstrate the characteristic
features of the present method, and leave discussions
on the whole data to future publications[14].

Fig. 3shows the frequency dependence of the third
harmonic signal at room temperature, for a fixed cur-
rent of I0 = 17 mA, covering more than six decades.
Although we measured differentialV3ω, the amplitude
of the signal should follow 1/

√
ω and the phase be

constant at−π/4 as a function of frequency for a pla-
nar heater/sensor. A deviation of measuredV3ω, rep-
resented by circles in the plot, from the theoretical be-
havior is evident below 1 Hz. This deviation is caused

Fig. 3. The frequency dependence ofV3ω, measured by the dif-
ferential 3ωmethod, from (glycerol)0.4(1,3-propanediamine)0.6 at
room temperature: (a) signal amplitude, and (b) phase. 2f is the
frequency of temperature oscillation. The solid line in (a) with
slope−1/2 is a guide to the eye. The open circles represent the
measured data points, while the black dots do the corrected values.

by the finite size effect of the heater/sensor, and can
be corrected.

Note that temperature oscillations given inEqs. (2)
and (3)are the solution to the ideal one-dimensional
problem, and the measured signal would deviate from
the ideal case as the finite heater/sensor width be-
comes comparable to the thermal diffusion length.
Then, the expression for the measured signal should
include �T ∗

h , real temperature oscillation, instead of
the original�Th for the ideal situation. The relation-
ship between these two was already derived by Birge
et al. [9,15] as:

�T ∗
h 
 eiϕ(1 − ϕ)�Th (5)

whereϕ is a dimensionless parameter representing the
finite size effect. For a planar heater/sensor of width
W placed on the surface of a substrate,ϕ is given by:

ϕ = λT

W
= 1

W

√
κs

2ωCps
(6)

When a liquid is placed on the substrate,Eq. (6) is
generalized in a straightforward manner,

ϕ = 1

W

∣∣∣∣∣
κs + κ√

2ωCpsκs + √
2ωCpκ

∣∣∣∣∣ (7)

This finite size effect should clearly manifest itself
around the glass transition. As a glass-forming liquid
goes through the glass transition, the heat capacity
takes the value of a liquid above the glass transition
and that of a solid below. As a result, a step-like change
in the measured phase in association with a amplitude
change is expected.

In Fig. 4 plotted are the amplitude and phase
of the temperature oscillation at 2f = 0.08 Hz,
as measured by the differential 3ωmethod, in the
vicinity of the glass transition of a binary mixture
(glycerol)0.4(1,3-propanediamine)0.6. Fig 4a displays
an amplitude variation of the measured temperature
oscillation �T ∗

h as a function of temperature. An
abrupt change in heat capacityCp through the glass
transition gives rise to a corresponding change in
amplitude, becauseκ·remains nearly constant as the
system undergoes the transition[13]. Fig. 4bis a plot
of the measured phase as a function of temperature.
First of all, a peak in the phase is seen; the peak
is caused by the imaginary part of heat capacity, a
typical feature of relaxation associated with the glass



D.H. Jung et al. / Thermochimica Acta 403 (2003) 83–88 87

Fig. 4. The finite size effect near the glass transition
of the glycerol–amine mixture. Measurements were done at
2f = 0.08 Hz. (a) Glass transition is easily seen from a variation
in the amplitude of�T ∗

h as a function of temperature. (b) The peak
in the phase is due to the glass transition. It should be noted that
the baseline value of the phase deviates from−45◦, and shows a
step-like change before and after transition, and these are caused
by the finite size effect. (c) The base line value of the phase cor-
rected for the finite size effect is−45◦, as the one-dimensional
heat diffusion equation would predict.

transition. It should be noted that the baseline value of
the phase deviates from−45◦, and shows a step-like
change before and after transition. These behaviors
are caused by the finite size effect. Using the relation
between|�T ∗

h | and |�Th| in Eq. (5), one can easily
calibrate�T ∗

h . The calibrated phase�Th is shown in
Fig. 4c, and its baseline takes−45 degrees above
and below the glass transition. Similarly, if we take
the finite size effect into account and correct the data
using the relationship between�Th and�T ∗

h , both the
amplitude and phase of the measured differential sig-
nal follow the ideal expression as displayed inFig. 3
(black dots).

Now turning to the high frequency part ofFig. 3,
it is seen that a deviation from the ideal behavior oc-

curs above a few kilohertz, particularly in the phase.
What is the cause of this deviation at high frequen-
cies? Although we do not have a complete under-
standing at present, one possibility may be that the
deviation is caused by a confinement of temperature
oscillation only to the heater/sensor at high frequen-
cies. Since the thermal diffusion length for a typi-
cal insulator becomes a few micrometers above, say,
10 kHz, the mass ratio of a liquid sample within the
thermal diffusion length to the heater/sensor including
the SiO2 layer becomes only a few percent. Consider-
ing the fact that if temperature oscillation is confined
only to the heater/sensor, the phase shift should go to
−90◦, the deviation at high frequencies may be ex-
plicable. Since this confinement effect naturally arises
at high frequencies with a decrease in thermal diffu-
sion length, it does not seem to be possible to avoid
it. Nevertheless, by taking the value of phase at room
temperature as reference and measuring relative devi-
ations, the dynamic range was extended to 30 kHz. In
fact, it appears to be possible to extend the method
close to 100 kHz, if one adopts a thinner film for the
heater/sensor than the ones used in the present exper-
iment and also eliminates the oxide layer. Extending
the working frequency range up to 100 kHz means that
one would be able to measure thermophysical proper-
ties of films of thickness sub-microns, and therefore
is well worth pursuing in view of the proliferation of
nanotechnology.

It should also be emphasized that the differential
method enhances S/N ratio particularly at high fre-
quencies. It is now possible to detect changes as small
as a few parts in 10−4 in amplitude and 0.01 degree
in phase. InFig. 5 we show a whole data set of com-
plex Cpκ = (Cpκ)

′ − i(Cpκ)
′′ of the binary mixture

(glycerol)0.4(1,3-propanediamine)0.6 versus log10 2f at
various temperatures; the quality of the data is evident.
As is seen from the data the system shows a typical
glassy behavior, that is, the dynamics of the system
slows down with decreasing temperature and the shape
of (Cpκ)′′ is asymmetrical. It may be noted that this re-
laxational behavior (or frequency dependence) of the
directly measured quantity, complexCpκ, is mainly
due to complex heat capacity,Cp(ω), becauseκ re-
mains frequency-independent in the supercooled re-
gion [13]. In many glass formers in the literature[16],
glassy relaxational behaviors are described well with a
Fourier transform of the Kohlrausch–Williams–Watts
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Fig. 5. (Cpκ)′ (top) and (Cpκ)′′ (bottom) of (glycerol)0.4(1,3-
propanediamine)0.6 as a function of frequency at various tempera-
tures. The data were taken by the differential 3ω method. The sym-
bols denote the data points, and the solid lines are fits to the data
with the Kohlrausch–Williams–Watts function, exp[−(t/τ)β], with
β = 0.56 (198 K), 0.57 (203 K), 0.58 (208 K), and 0.59 (213 K).

function,R(t) = exp[−(t/τ)β]. The solid lines in the
figure represents the fitting results with excellent co-
incidence with the experimental data.

In conclusion, we have developed a new dynamic
calorimeter using the differential 3ωdetection method.
The differential 3ωcalorimeter is capable of measur-
ing dynamic heat capacity and thermal conductivity
of solid or liquid samples with wide dynamic range

(up to 30 kHz), high sensitivity (a few parts in 10−4 in
amplitude and 0.01◦ in phase), and ease of operation.
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